A Cellular Automata Simulation of Atomic Layer Etching

Jan Strotmanna, Meghali Chopraa,b, Roger Bonnecazea,b
\aMcKetta Department of Chemical Engineering
The University of Texas at Austin,
bSandBox Semiconductor, Austin, TX 78703
Atomic Layer Etching

<table>
<thead>
<tr>
<th>Start</th>
<th>Reaction A</th>
<th>Switch Steps</th>
<th>Reaction B</th>
<th>End/Repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modification</td>
<td>Self-Limiting</td>
<td>Self-Limiting</td>
<td>Film Removed</td>
</tr>
<tr>
<td></td>
<td>Chlorination</td>
<td></td>
<td>Ion Bombardment</td>
<td></td>
</tr>
</tbody>
</table>

Generic ALE:

- **Si Surface**

Example Si ALE:

- **Si Surface**

From Kanarik et al. *JVST A* 2015

Advantages
- Atomic scale precision
- Selective

Challenges
- Processing time
- Throughput
Fast Model for Simulating ALE

GOAL: Build a fast, cellular automata or rule based model for fast simulation and optimization of ALE

METHOD
• Build on full plasma and MD simulations of ALE (e.g. Agarwal and Kushner, JVST A 2009; Ranjan et al. JVST A 2016)
• Remove atoms by experimentally and theoretically supported probability based rules

Agarwal & Kushner JVST A 2009
Fast Model for Simulating ALE

GOAL: Build a fast, cellular automata or rule based model for fast simulation and optimization of ALE

METHOD

• Build on full plasma and MD simulations of ALE (e.g. Agarwal and Kushner, JVST A 2009; Ranjan et al. JVST A 2016)

• Remove atoms by experimentally and theoretically supported probability based rules

• Assume the self-limiting modification or chemical activation of surface atoms is complete

• Include sputtering effects due to increased ion bombardment
Rule Based Model for ALE

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Configuration 1</th>
<th>Configuration 2</th>
<th>Configuration 3</th>
<th>Configuration 4</th>
<th>Configuration 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilities - Set 1 (no sputter)</td>
<td>85%</td>
<td>100%</td>
<td>92.5%</td>
<td>70%</td>
<td>72.5%</td>
</tr>
<tr>
<td>Probabilities - Set 2</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>85%</td>
<td>93%</td>
</tr>
<tr>
<td>Sputter Probabilities - Set 2</td>
<td>15%</td>
<td>25%</td>
<td>20%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Probabilities - Set 3</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Sputter Probabilities - Set 3</td>
<td>25%</td>
<td>35%</td>
<td>30%</td>
<td>15%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Evolution of a Flat Surface

Probability Set 1 (No secondary removal)

Etch Cycle

0

4

10

14

Average etch rate (layers per etch cycle) reaches steady-state immediately
Evolution of a Flat Surface

Etch Cycle

Probability Set 1 (No secondary removal)

0

4

10

14

Roughness increases and reaches steady-state at around 10-12 etch cycles
Effect of Increased Ion Energy

Etch Cycle

13

20

Probability Set 2

Probability Set 3

- Etch rate reaches steady-state immediately
- Etch rate faster for probability set 3, which has higher primary and secondary probabilities of removal
Effect of Increased Ion Energy

- Roughness larger for higher secondary etch rate
- Larger number of cycles needed to reach steady-state
Smoothing of Initial Rough Surfaces

- Etch rate independent of initial surface
- Initial surface variations persist for many etch cycles
- Rough surfaces smoothed by etch
Long Time Evolution of Roughness

Initially Flat - Probability Set 2
3 Realizations

Initially Sinusoidal - Probability Set 2
3 Realizations

- Variability among realizations
- Many etch cycles required to approach steady-state
- Slower approach to steady-state for non-smooth surfaces
Etch Rate per Cycle

Layers etched per cycle for different probability sets and initial configurations of the surface and predictions based on probability averages

<table>
<thead>
<tr>
<th>Initial Surface</th>
<th>Probability Set 1</th>
<th>Pred. Set 1</th>
<th>Probability Set 2</th>
<th>Pred. Set 2</th>
<th>Probability Set 3</th>
<th>Pred. Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>0.87</td>
<td>0.84</td>
<td>1.14</td>
<td>1.11</td>
<td>1.27</td>
<td>1.25</td>
</tr>
<tr>
<td>Sinusoidal</td>
<td>0.89</td>
<td>0.84</td>
<td>1.16</td>
<td>1.11</td>
<td>1.28</td>
<td>1.25</td>
</tr>
<tr>
<td>Square Wave</td>
<td>0.89</td>
<td>0.84</td>
<td>1.16</td>
<td>1.11</td>
<td>1.28</td>
<td>1.25</td>
</tr>
</tbody>
</table>

- Etch rate is determined by the averages of the probabilities for Set 1

<table>
<thead>
<tr>
<th>Probabilities - Set 1</th>
<th>85%</th>
<th>100%</th>
<th>92.5%</th>
<th>70%</th>
<th>72.5%</th>
</tr>
</thead>
</table>

Avg 84%
Etch Rate per Cycle

Layers etched per cycle for different probability sets and initial configurations of the surface and predictions based on probability averages

<table>
<thead>
<tr>
<th>Initial Surface</th>
<th>Probability Set 1</th>
<th>Avg Set 1</th>
<th>Probability Set 2</th>
<th>Avg Set 2</th>
<th>Probability Set 3</th>
<th>Avg Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>0.87</td>
<td>0.84</td>
<td>1.14</td>
<td>1.11</td>
<td>1.27</td>
<td>1.25</td>
</tr>
<tr>
<td>Sinusoidal</td>
<td>0.89</td>
<td>0.84</td>
<td>1.16</td>
<td>1.11</td>
<td>1.28</td>
<td>1.25</td>
</tr>
<tr>
<td>Square Wave</td>
<td>0.89</td>
<td>0.84</td>
<td>1.16</td>
<td>1.11</td>
<td>1.28</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Etch rate is determined by the sum of the averages of the two probabilities Sets 2 and 3.

<table>
<thead>
<tr>
<th>Probabilities - Set 2</th>
<th>100%</th>
<th>100%</th>
<th>100%</th>
<th>85%</th>
<th>93%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputter Probabilities - Set 2</td>
<td>15%</td>
<td>25%</td>
<td>20%</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Avg 95.6% → 111%

Proprietary and Confidential - SandBox Semiconductor Incorporated
Etch Rate versus Roughness

- Etch rate and roughness both increases Ar bombardment/plasma power
- Etch rate and long-time roughness independent of initial surface roughness
- More layers etched per cycle leads to greater roughness
- Tradeoff of low speed for smoother surface
Conclusions

• Fast cellular automata model with few parameters for simulation of atomic layer etching (ALE).

• The etch rate and etch roughness depends only on the probability sets used and not on the initial configurations of the surface, whether they be flat, sinusoidal or square patterned.

• The roughness correlates strongly with the etch rate and so there is a trade-off between desirable higher etch rates and undesirable roughness.